還在慢慢判定菌種?讓微生物鑑定儀幫你一把!

  • 施朝仁/財團法人食品工業發展研究所/生物資源保存及研究中心研究員

「我是誰?」微生物百百款,要如何鑑定?

對所有微生物研究的從業人員而言,無論是在學界、業界抑或是醫界,精確的微生物身份判定或鑑定,一直都是最重要的事情。

在學界,正確的菌種鑑定關係著研究生能不能順利畢業、教授的論文能不能發表;在業界,微生物產品中菌的正確性則關係著普羅大眾的健康與權益;在醫界,精確的菌種鑑別,更是影響醫生能否正確下藥,是攸關生死的重大任務。

傳統微生物的鑑定方法建立於形態觀察生理生化反應的基礎上。

形態觀察不外乎菌長的圓還是扁?長還是短?有無鞭毛?會不會產生內孢子?革蘭氏染色是紅還是藍?菌落形態是濕潤隆起或是乾扁皺縮等等。生理反應要看菌的厭氧性、生長溫度、生長酸鹼值、耐鹽程度等。生化反應則是看對碳源的利用、碳水化合物的氧化或發酵、酵素反應等等。然而,這些檢測所謂的表現型特性 (phenotype) 的觀察或試驗,往往費時且耗工,甚至不一定精確。

傳統微生物的鑑定方法建立於形態觀察及生理生化反應的基礎上。圖/pixabay

時代在走,進步要有:微生物鑑定儀歷代演進

因應著科研人員對 「快速」、「可靠」 的渴望與需求,微生物鑑定平台也跟著快速演進中,更快、更準的套組與儀器不斷地推陳出新。以生化反應偵測為例,Biomerieux 公司在 1970 年代推出 的 API ® 鑑定產品堪稱全球最早開發的手工微生物鑑定系統。

這套系統將繁複的零散生化試劑融合成套裝式組合,曾被視為微生物領域中的黃金標準鑑定法,被廣泛運用在各領域當中,整個系統大約涵蓋 600 多種菌株,所需的鑑定時間只要 18-72 小時 。

然而,他畢竟還是 『手工套組』,操作時的試劑添加、結果判讀都還是得自己來。

API® 鑑定系統。圖/作者提供

於是另有廠商推出了半自動的鑑定系統,如 BiOLOG 公司推出的 MicroStation 微生物菌種鑑定系統 ,只要手動添加菌液到 96 孔樣本盤,反應結果就交由機器判讀、比對。這套系統可鑑定的菌株範圍更廣,多達 2500 種。

BiOLOG MicroStation 微生物菌種鑑定系統。圖/作者提供

有了半自動系統後,當然就會有廠商研發全自動系統,Biomerieux 公司繼 API ® 系統後,再接再厲推出全自動微生物分析系統 Vitek 2 Compact,強調只要備妥菌液,機器就可以自動將菌液吸入測試卡內,在含有不同試劑的小反應槽裡進行反應,腸內桿菌最快 2-6 小時即可判定身份。

Vitek 2 微生物鑑定系統。圖/作者提供

上述這些鑑定方式,都是根據微生物的表現型來進行判定,然而隨著分子生物技術的快速進步,基於微生物基因型的分類方法發展得如火如荼。不管是利用細菌的 16S RNA 基因序列,或是真菌的 18S RNA 基因序列,只要能取得目標微生物的 DNA,經過簡單的聚合酶連鎖反應 (PCR) 及定序反應就能獲得菌種的 DNA 序列。

也因此,線上基因序列資料庫的資料正以每日數以萬計的數量快速累積中。根據這些序列,生物資訊專家可快速的將各個微生物樣品進行比對分類,甚至畫出他們的系統演化樹圖。微生物學家只要將手上未知菌種的 16S 或18S rRNA 基因的序列與資料庫進行比對,很快地就能得到最接近的菌名,而且多數菌種的身份判定能精確到連同種不同品系都鑑定得出來。於是,現在的微生物從業人員,遇到未知菌株,第一個反應就是定序。至此,微生物鑑定平台正式進入了基因型的時代。

別再蝦等了,2小時內菌種鑑定迅速搞定

而隨著定序繼續的突飛猛進,尤其次世代定序儀的發展,更將微生物鑑定帶入另一個境地:不用純菌也不用活菌就可了解全菌組成的宏觀基因體世代 (metagenomics)。

不過這不是此篇重點,表過就好。對微生物生態學家、醫院微生物檢驗人員或食品、藥廠環境監控人員而言,每天所面對的絕對不會是簡單、少數幾株菌的鑑定工作,往往一次就是數百甚至上千個未知菌落。即使你的老闆很有錢,可以很豪邁地把全部的未知菌落 (菌液) 通通送去做定序,但別忘了還要先一個一個抽 DNA、跑 PCR、跑電泳確認增幅片段等等的工作得先進行,就算實驗室裡有錢到可以將上述工作都以全自動設備代勞,「時間」仍是無法避免的成本。

解決的方法就是基質輔助雷射脫附游離飛行時間式質譜儀,以下簡稱 MALDI-TOF MS ,這項技術近年已被廣泛應用在微生物鑑定與研究上。此儀器的原理為:

將樣品與基質 (通常為有機酸) 混合,以鐳射光激發樣品,讓樣品氣化游離後,飛行至偵測器,系統再將樣品中所有蛋白質、胜肽、代謝物等依質量大小以圖譜呈現。

這就像是要分析一個班級(細胞)的學生體重(全細胞蛋白質)組成,讓學生穿上感應槍聲會強迫起跑的特定衣物(基質),並排站於起跑線(樣本盤),鳴槍(雷射激發)後起跑。學生裡體重輕的跑得快,體重重的跑得慢,裁判在終點線依抵達順序將學生排序,排列於司令台(圖譜),則可得到該班級學生體重組成(蛋白質指紋圖譜)。

MALDI-TOF MS 解析微生物的全細胞蛋白質分子量大小範圍在 2000-20000 Da 之間,此區間的蛋白質以核醣體蛋白等胞內負責持家的蛋白質為主4。核糖體蛋白在不同菌種都需要用到且需求量相當,所以不易受到外在培養條件影響,故質譜訊號有良好重複性與再現性,可作為菌種鑑別之依據。MALDI-TOF MS 設備的製造商已與德國菌種中心合作,將已知菌株的蛋白質指紋圖譜建立資料庫,利用相同物種指紋圖譜一致的特性,將未知樣本圖譜與已知圖譜比對,則可快速完成微生物身分鑑定。

MALDI-TOF MS 系統。圖/作者提供

對於一般微生物而言,其解析度已能達到 「種」 層次的鑑別,甚至是近緣物種之區分,因而被認為具有取代細菌 16S rRNA 基因定序比對之潛力1,2,3。MALDI-TOF MS 技術比對菌株細胞裡的多種蛋白質,而 16S/18S rRNA 基因的比對只用一個基因為代表。想像要區分兩個班級的特色差異,分析全班同學的體重組成,似乎比只抓班長出來比較身高體重來的宏觀一些。

利用 MALDI-TOF MS 進行微生物分類鑑別最大優勢在於時間成本的降低。只要將欲分析的菌落直接塗抹於樣本盤,覆以特定基質即可,而且每個樣品盤可同時處理 96 個樣品,上機後 2 小時內即可完成所有分析。每一個樣品點所需使用的試劑耗材花費低於百元新台幣,相較於前述的手動微生物鑑定套組-API® 與半自動-BiOLOG 或全自動鑑定系統-Vitek 2,甚至是 16S rRNA 基因序列分析,在操作上更加簡便且成本更低,因此非常適用於短時間內進行大量樣品之快速分群鑑別分析。想做菌種鑑定,你不用再苦等生化反應與定序結果了,試試 MALDI-TOF MS吧!

參考文獻

  1. Dieckmann, R. Helmuth, R. Erhard, M. and Malorny, B. 2008. Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 74:7767–7778.
  2. Ruiz-Moyano, S. Tao, N. Underwood, MA. and Mills, DA. 2012. Rapid discrimination of Bifidobacterium animalis subspecies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Food Microbiol. 30:432–437.
  3. Sedo, O. Vadurova, A. Tvrzova, L. and Zdrahal, Z. 2013. The influence of growth conditions on strain differentiation within the Lactobacillus acidophilus group using matrix-assisted laser desorption/ionization time-of- flight mass spectrometry profiling. Rapid Commun. Mass Spectrom. 27:2729–2736.
  4. Wieser, A, Schneider, L. and Jung, J. 2012. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 93:965–974.

 

本文轉載自MiTalkzine,原文《還在等菌種鑑定結果?試試 MALDI-TOF MS吧!

歡迎訂閱微雜誌MiTalkzine,加入 MiTalker 的行列,一起來認識這個星球上千萬種各式各樣的微生物吧!

訂閱連結:https://goo.gl/Qo59iG


泛知識節就、在、本、周!3/30、3/31 隆重登場!

我們與知識的距離有多遠?泛知識節,將是你與知識的新起點。

在這場最特別的知識饗宴中,我們要跟你分享藏在各處的知識:科學教育、科普書的鍊成、展覽策畫、官方科普、知識型Youtuber們的辛酸血淚……所有你想得到想不到的,全都在這裡

想知道這些獨家秘辛,就快來:http://bit.ly/2OrbJGK

想了解更多可以去官網看看喔:http://bit.ly/2HZCNvJ


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 還在慢慢判定菌種?讓微生物鑑定儀幫你一把! appeared first on PanSci 泛科學.

【特輯】在《我們與惡的距離》之間:關於傷痛、司法、媒體與恐懼的交集

公視與呂蒔媛編劇、大慕影藝合作推出的《我們與惡的距離》於 3 月 24 日播映,首播兩集以無差別殺人事件為起點,同時交織著司法與媒體的現況。此劇挑戰了艱鉅的台灣社會議題,亮眼的卡司、精彩的劇情節奏以及細膩的情感呈現,讓人邊泛淚邊期待著週末的到來。

這部戲劇不只討論了我們與惡之間若即若離的距離,也談關於面對失去摯愛的傷痛,正義、憤怒與人權的爭論,精神疾病的診斷與污名。就讓我們來看看這些場景背後的各種討論吧!

我們與惡的距離宣傳圖。source:大幕影藝

——-以下有一、二集劇情描述,怕雷慎入——-

 

痛失摯愛,那樣的哀傷時時浮現

在隨機殺人事件中失去兒子的新聞台編輯主管宋喬安(賈靜雯飾)與其丈夫劉昭國(溫昇豪飾)感情瀕臨破裂,時隔兩年的母親節,喪子的悲痛依然壟罩整個家庭……

失去摯愛引發的強烈悲痛,是引起憂鬱症的重要因素。

幾乎每一個痛失摯愛的人都會經歷心情低落期,時間長短各有不同──從數小時、數天、數週到數月都有可能,有時候甚至會持續數年。因為失去至親好友而悲痛的人大多不會罹患嚴重影響健康的憂鬱症,但是其中有將近三分之一會陷入一段臨床上很顯著的發作期。沒有人能避免面對死亡,所以死亡一直都會是引起許多人憂鬱的因素。即便統計資料不完善,我們也可以推估大約四分之一的憂鬱症病例與傷慟有關。

在排山倒海的輿論與司法體系中,如何維繫普世價值的人權?

人權律師王赦(吳慷仁飾)及妻子丁美媚(周采詩飾)家庭生活溫暖和睦。卻因為他堅持接任爭議案件的辯護律師,而蒙上一層陰影。

人權也是一種態度,它是多元、包容、自我懷疑與驗證。如果想要擁抱人權的一角,就需要接受它的全貌。冤案運動不是自我感覺良好的工具,而是一面鏡子,唯有同時重視科學與人權者,才能找回司法的價值。

搶快回應,或許不是得到而是失去

各大新聞台熱烈撥放著普吉島爆炸的消息,編輯台忙亂查證中,所有的人都尚未獲得確切的資訊,上級的電話卻一聲聲打進來施壓,詢問為什麼還不從眾撥出相同的新聞……

戲劇反映真實,當代快速的媒體節奏、活躍的社群媒體加上片面化的資訊呈現,大型的傷痛事件往往成為爭論不休的的戰場。但在評論之際,我們真的了解真相了嗎?

無論是快速評論、快速遺忘或是片面論斷,其實都是源自於人類對於資訊處理的本能。但是如果能注意到背景和脈絡的影響,運用整體的思考,或許我們終能讓這世界一點一點慢慢改善。

令人恐懼的,往往來自於不曾瞭解

幼稚園闖入疑似精神病患者挾持幼童,社區內的精神療養院只得緊急聲明:「目前只有 2 名成員告假外出聯繫不上,其他成員都保持聯繫。」飽受社區壓力的精神療養院忐忑不已。

於精神疾病的印象,較為人所知的可能思覺失調症 (Schizophrenia, 舊稱精神分裂症),這是一種思考、感覺、行為與現實脫節的疾患,但「並不是」精神疾病的全貌。

在精神疾病診斷與統計手冊第五版(Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, DSM-V)這947頁的英文書中,洋洋灑灑的列出了18類的精神疾病,如果認真翻閱,會發現我們自己可能就符合其中的一些診斷準則(如心情低落、失眠、酒精、尼古丁依賴),那不就如同食神所說:「只要有心,人人都可以符合精神病」?

就像法律訂定的精神不是要入人於罪一樣,精神疾病的定義是確認出「精神狀態、自己主觀感受的痛苦、社會與職業的功能是否明顯偏離『一般人』」的這群人,給予幫忙。精神病不等同於大家說的瘋子;來精神科就診,也不是要把這個人貼上標籤、然後關起來,而是要幫助他能夠正常的回歸社會。

當那些已然破碎的心智,碰上暴力與司法

狹持事件還未終止,王赦和美媚仍然在幼稚園外焦急等待。此時品味新聞台找不到精神科醫師來出面說明,因此宋喬安慫恿擔任精神科醫師的妹夫林一駿(施名帥飾)上節目來談疑似狹持事件,但林一駿卻這麼回:「患者會被污名還不都是你們這些媒體造成的,媒體這樣一搞,明天什麼家屬病人、社區鄰居通通都把他們沒什麼問題的病人,送去強制住院了啦。」

精神疾病與心智障礙的患者,是一般社會行為範疇的異常值(outlier),這也正是這些患者常被污名化為「瘋了」而無法被深入理解的原因。我們因為對於精神疾病與心智障礙的無知與怠惰,寧可選擇淺薄的判斷與快速的隔離手段,也不願深入去理解:這些患者不是「病患」,而是患了病的「人」──重點不該在於把患者跟病症同質化,而一起加以隔離或屏棄。

重點該在把這些人重新當作「人」來看待,深入的理解他們的疾病與苦痛,進而在這些人誤蹈法網時,透過適切地檢視與討論,綜合臨床心理、精神醫學以及法律的觀點,來決定恰當的處遇手段。

這些龐大的議題,需要經歷大眾一次次的關心探索,才有機會一同找到的出路。《我們與惡的距離》作為真實案件改編的寫實劇,就讓我們隨著劇情一步步地體會探索這個世界吧。

本劇尚在播映中,想看戲的夥伴請詳見姐妹站娛樂重擊整理:《我們與惡的距離》線上看 與播映時間總整理

編按:本文多數文字改寫自延伸閱讀,完整版本請點入內了解更多。


泛知識節就、在、本、周!3/30、3/31 隆重登場!

我們與知識的距離有多遠?泛知識節,將是你與知識的新起點。

在這場最特別的知識饗宴中,我們要跟你分享藏在各處的知識:科學教育、科普書的鍊成、展覽策畫、官方科普、知識型Youtuber們的辛酸血淚……所有你想得到想不到的,全都在這裡

想知道這些獨家秘辛,就快來:http://bit.ly/2OrbJGK

想了解更多可以去官網看看喔:http://bit.ly/2HZCNvJ


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 【特輯】在《我們與惡的距離》之間:關於傷痛、司法、媒體與恐懼的交集 appeared first on PanSci 泛科學.

喝酒臉紅就容易罹癌嗎?用「因果中介模型」透視疾病的黑盒子

本文轉載自中央研究院研之有物,泛科學為宣傳推廣執行單位

  • 執行編輯|林婷嫻、美術編輯|林洵安

從統計找因果關係

人體中,有一些奇妙的因果關係。例如:小時候家裡窮,為什麼長大較胖?喝酒容易臉紅,因此易罹肝癌嗎?中研院統計所的黃彥棕副研究員說明,透過「因果中介模型」,可以找出中間究竟發生什麼事,藉此提供可能的醫療對策。

就讀醫學院、專攻生物統計的黃彥棕,與我們分享基礎的統計觀念。請放心,本篇沒有困難的數學算式。
攝影│張語辰

您畢業於醫學院,為什麼沒當醫師,而是研究統計?

我讀大四的時候,人類基因被解碼出來,大家就在討論下一個世代的醫學和生物研究要做什麼。當基因的資料量變大,就不太可能用傳統一個分子、一個基因的方法來看,那時候覺得「量化」的訓練可能是我以後需要的,而且我本身也對數學有興趣。

其實,醫學存在大量的「不確定性」,例如,同樣的醫師看病,給 A 病人吃這個藥可以康復,但 B 病人吃同樣的藥卻不會好。換句話說:

醫學體現了不確定性,而統計學是用來研究不確定性

之後我加入陳建仁老師的實驗室,研究 B 肝病毒和 C 肝病毒對於肝臟的交互作用,這跟我後來跨入「因果中介模型」的領域有關。那時候楊懷壹學長帶著我,從最基礎怎麼寫程式,手把手教我慢慢做。

後來我們發現 B 肝病毒和 C 肝病毒呈現競爭關係,它們都想佔領肝臟,通常是 B 肝病毒因為母子垂直傳染先抵達,而 C 肝病毒後到。兩個病毒交互作用,這個中介過程造成的結果很有趣──反而是肝癌機率會變低。(註一)

在陳老師實驗室研究的這個題目,對於我的學術生涯有很大的影響,包括後來到哈佛大學攻讀流行病學和生物統計,以及投入因果中介模型的研究,都是受到這個題目的啟蒙。

研究生物統計,要特別注意什麼?

要注意「相關性」和「因果關係」不能混淆。舉個例子,如果有人發現「吃冰淇淋」和「被鯊魚攻擊」的次數呈現正相關,如下圖所示:

「吃冰淇淋」和「被鯊魚攻擊」的次數變化,呈現高度正相關。(舉例)
資料來源│黃彥棕    圖說重製│林洵安

可能有人看了這個資料,會下一個結論:吃冰淇淋會導致你容易被鯊魚攻擊。但真的是這樣嗎?其實影響這兩者的原因是「夏天」。因為夏天人們喜歡吃冰淇淋,而夏天人們也喜歡去海邊,導致被鯊魚攻擊的次數提高。

這個例子可以用常識判斷,但生物和醫學研究不太能只靠常識。如果沒有區別「因果關係」和「相關性」的差別,有時會產生一些嚴重的後果,關係到病人的生存。

如何確認「因」和「果」的關係?

以醫學來說,疾病都會有一個病程,通常我們知道開頭和結尾,但不知道中間發生什麼事。

舉個例子,若我們要研究「抽菸」透過改變身體什麼機制導致「肺癌」,就能藉由因果中介模型解釋因和果中間的機制,找出肺部的腫瘤是如何發生。(註二)

「因果中介模型」在於找出因和果「中間」發生什麼事。例如:抽菸到肺部產生腫瘤的過程中,是因為香菸所含物質,導致細胞基因發生甲基化。
資料來源│黃彥棕    圖說設計│林婷嫻、林洵安

疾病的過程常常是一個黑盒子。站在醫生的角度,通常只知道疾病的因和果,但若疾病的「因」是沒辦法被改變的,這樣對病人一點幫助也沒有。這種情況下,我們若能找出「中介因子」,就能透過追蹤或調節中介因子,來避免或降低疾病「結果」發生的可能性。

「肥胖」也能找出中介因子嗎?

肥胖的原因有很多,其中一個是:在美國已經知道「小時候家裡社經地位低」和「長大後過胖」這兩者的關係是確立的,但不知道中間的機制。我們用因果中介模型分析發現,其實這中間可能是受到基因甲基化的影響。

基因是與生俱來的,一般來說基因序列不會改變,可是每個基因的表現量會不一樣。就像鋼琴鍵盤順序不會變,但各個琴鍵可以彈出不一樣的大小聲。而甲基化的意思,就是環境因子會影響基因表現量。

我們從受試者的臀部,以 FNA (細針抽取細胞檢查)抽取脂肪細胞,作為分析基因的資料。的確發現,脂肪細胞裡一些基因的甲基化,參與中間的間接作用。也就是說,家裡社會經濟地位低,會導致脂肪細胞某一些基因甲基化的程度不太一樣;這些不太一樣的程度,可能進而導致成年時候肥胖。(註三)

童年的外在環境,如何影響成年肥胖?以美國受試者的資料來分析,是因為家裡吃得不健康,使得脂肪細胞一些基因甲基化。
資料來源│黃彥棕    圖說設計│林婷嫻、林洵安

窮困家庭能吃飽就不容易,很難注重健康。家裡大人如果吃得不健康,小孩也會跟著吃,這個環境因素會影響下一代。因為吃的東西,會記憶在基因裡面,透過改變脂肪細胞一些基因的甲基化程度,造成長大後容易肥胖。不過,這些是以美國人為受試對象的研究,我們需要臺灣族群的研究,來了解目前臺灣人口肥胖的問題。

還有一個常見的因果關係:喝酒容易臉紅,易罹肝癌嗎?

喝酒容易臉紅的人,是因為肝臟代謝乙醛的基因有缺陷,導致身體缺乏解酒酵素 (ALDH2) 。這個基因缺陷,通常會讓這個人變得比較不喜歡喝酒,因為會臉紅、起酒疹、不舒服。不喝酒的話,「間接作用」就會保護肝臟。

可是另一方面,不容易代謝乙醛的基因,影響的不只是喝酒的行為,也會造成肝臟代謝毒物的效用不佳。你帶著一個有缺陷的基因,導致毒物無法代謝、累積在肝臟,這「直接作用」會對肝臟產生危險性。

陳建仁老師和楊懷壹老師合作,我們用因果中介模型,來看這兩個機制的交互作用,發現最後對肝臟的正負作用會相互抵消。也就是說,喝酒容易臉紅的人,透過「不喝酒/肝臟易累積毒物」這兩個機制並存、相抵,不會對肝臟造成顯著的罹癌風險。(註四)

代謝乙醛的基因有缺陷,會造成人們不喜歡喝酒(間接作用),但肝臟也會容易累積毒物(直接作用)。兩個作用相抵,對於肝臟其實不會造成顯著的罹癌風險。(編註:本圖說於 2019/3/19 將甲醛更正為乙醛)
圖說設計│林婷嫻、林洵安

研究過程中,有沒有遇到什麼困難?

就是……數學算式推導不出來,呵呵呵。有時候回到家會跟太太說:「我今天又把一個題目做死了。」統計學和其它領域一樣,學術研究大部分的時間都是在面對挫折。

想要特別說明的是,很多人認為因果推論是發展一個統計模型,證明 A 和 B 是因果關係。其實這是誤解,我們做因果推論,其實花很多時間在探討什麼「不是」因果關係。生活上常常要用消去法,因果推論也是。

研究上常有的合作模式是,我們先把「因果中介模型」推導出來,合作對象讀了論文再來找我們,希望用這個統計模型回答他們的問題,找出影響病程的中介因子。我們也會和醫師合作,運用去識別化的病歷和健保資料來分析。

如果物理學家真的發明時光機,我可能就失業了。

如果人生可以重來,就能比較同一個人這輩子有抽菸、另一輩子沒有抽菸,導致肺部腫瘤的過程機制。但因為時光機還沒被發明出來,我就可以繼續做這門統計研究。

延伸閱讀

本文轉載自中央研究院研之有物,原文為喝酒易罹癌?小時候家裡窮會胖?統計學家黃彥棕來解答,泛科學為宣傳推廣執行單位


泛知識節就、在、本、周!3/30、3/31 隆重登場!

我們與知識的距離有多遠?泛知識節,將是你與知識的新起點。

在這場最特別的知識饗宴中,我們要跟你分享藏在各處的知識:科學教育、科普書的鍊成、展覽策畫、官方科普、知識型Youtuber們的辛酸血淚……所有你想得到想不到的,全都在這裡

想知道這些獨家秘辛,就快來:http://bit.ly/2OrbJGK

想了解更多可以去官網看看喔:http://bit.ly/2HZCNvJ


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 喝酒臉紅就容易罹癌嗎?用「因果中介模型」透視疾病的黑盒子 appeared first on PanSci 泛科學.

基因編輯一定有風險,評測 CRISPR 工具的脫靶率

  • 本文來自《领研网》。撰文/戚譯引。

中國科學家發表兩篇 Science 論文,對多種基因編輯工具進行「測評」。兩項研究都指出,被學界看好的單鹼基編輯工具有著極高的脫靶風險,其中一項還提出了全新的脫靶率檢測技術「 GOTI 」。

圖/pixabay

CRISPR 基因編輯技術已經發展出多種形式,然而它們都隱含著同樣的風險,那就是脫靶(off-target——意外編輯了基因組中其他的基因,造成不可預測的後果。在去年底引發巨大爭議的賀建奎事件中,許多科學家就表達了同樣的擔憂:這次編輯究竟有沒有發生脫靶?你怎麼證明沒有脫靶?

學術界早就意識到脫靶問題的存在,但量化評估十分困難。3月1日,中國科學家為主的兩個團隊在 Science發表論文,每篇論文只有兩頁,卻揭示了同一個重要的資訊:

基因編輯有風險,其中單鹼基編輯系統(base editor)脫靶尤其嚴重。

什麼是單鹼基編輯?

單鹼基編輯技術由 CRISPR-Cas9 改進而來。CRISPR 技術的基本原理,就是用 RNA 引導 Cas9 等核酸內切酶對 DNA 上的目的地區域進行編輯,可以刪除或啟動目標基因。核酸內切酶有許多種,Cas9 是其中最早被發現、應用最廣泛的,此後被發現的酶還有 Cpf1、Cas12b、Cas13 等。

Cas9 同時對 DNA 的雙鏈進行剪切,形成雙鏈斷裂(double strand breaks,DSBs),修復的過程中容易產生新的突變。而單鹼基編輯器對 Cas9 進行了改進,並添加了脫氨酶(deaminase),只對 DNA 的一條鏈進行切割,然後精確地對一個鹼基進行修改。

去氧核醣核酸(DNA)的雙股螺旋結構。在該結構中的原子是按元素進行顏色編碼,還有兩個鹼基對的詳細結構示於右下角。圖/wikimedia

根據目標鹼基的不同,單鹼基編輯工具可分成兩類,一類是胞嘧啶單鹼基編輯器(cytidine base editor,CBE),將胞嘧啶(C)轉換成胸腺嘧啶(T);另一類是腺嘌呤鹼基編輯器(adenine baseeditor,ABE),將腺嘌呤(A)轉換成鳥嘌呤(G)。

單鹼基編輯看起來操作更精確,因而被寄予厚望。但這次的兩篇 Science 論文對不同編輯技術的脫靶率進行了評估,發現胞嘧啶單鹼基編輯器具有極高的風險。

全基因組範圍的脫靶效應:自然突變的兩倍

圖/pixabay

中國科學院遺傳與發育生物學研究所高彩霞團隊用水稻進行實驗,發現 CBE 會引發全基因組範圍的脫靶效應,其引發的突變數量大約是自然環境下發生突變的兩倍(DOI: 10.1126/science.aaw7166)。

高彩霞團隊借助全基因組測序技術,對三種應用廣泛的單鹼基編輯工具 BE3、高保真 BE1(HF1-BE3)和 ABE 進行了檢驗。與野生型對照組和 ABE 相比,BE3 和 HF1-BE3(均屬於 CBE)引發了數量顯著更多的單核苷酸變異(single nucleotide variant,SNV),主要是將基因組中其他部位的胞嘧啶也變成了胸腺嘧啶。

研究還發現,脫靶預測演算法 Cas-OFFinder 預測並不準確。在接受 BE3 編輯的植株中,只有 6 處突變發生在預測的 3 個突變部位中;而在接受 HF1-BE3 和 ABE 編輯的植株中,沒有一處突變發生在預測的部位中。

GOTI:評估脫靶的新方法

圖/pixabay

中國科學院神經科學研究所楊輝團隊和史丹佛大學 Lars M. Steinmetz 團隊合作的研究,也得出了相似的結論:Cas9 和 ABE 引發的單核苷酸變異較少,而 CBE 讓突變的數量翻了 20 (DOI: 10.1126/science.aav9973)。

該研究的另一亮點在於提出了全新的脫靶評估技術 GOTI(Genome-wide Off-target analysis byTwo-cell embryo Injection):在小鼠胚胎卵裂球的二細胞期,對其中一個細胞進行基因編輯,並進行螢光蛋白 tdTomato 標記;隨後,在胚胎發育的第 14.5 天用流式細胞儀(FACS)將兩個細胞的子代進行分離,分別進行測序。

借助 GOTI 技術,科學家第一次能夠對脫靶進行全面的量化評估。楊輝團隊對 CRISPR-Cas9、BE3 和 ABE7.10 進行了檢驗,全部 12 組中發生的插入/缺失(indel)數量在 0 到 4 之間,並且沒有一個發生在預測的脫靶部位。

實驗發現,在經過 BE3 編輯的胚胎中平均發生 283 個 SNV;相比之下,經過 ABE7.0 編輯的胚胎平均發生 10 個 SNV,與自然突變的數量無顯著差異。而且, BE3 編輯引發的一些突變發生在原癌基因或抑癌基因上,這進一步提示了可能的致癌風險。

臨床應用要謹慎

圖/pixabay

Science 採訪了業內人士對此的看法。

  • 哈佛大學化學家、第一代鹼基編輯器的發明者劉如謙(David Liu)認為:基因編輯的錯誤整體上仍屬罕見,不太可能對實驗室應用造成影響,但足以為那些想要在病人身上進行試驗的人敲響警鐘。
  • Cas-OFFinder 的發明者、來自韓國國立首爾大學(Seoul National University)的 Jin-Soo Kim 說:「這兩篇論文很有趣,也很重要。現在重要的是找出是哪一種成分引發了其他突變,以及如何減少或消除它。」
  • 麻省總醫院(Massachusetts General Hospital)病理學家、劉如謙的合作夥伴 J. Keith Joung 認為:對編輯器中的脫氨酶或其他成分進行改進或許能夠減少脫靶效應。

基因編輯療法被寄予厚望。在治療鐮刀形紅血球貧血症萊伯氏先天性黑蒙症方面,相關治療手段已進入臨床試驗階段。而這兩項研究進一步提示了基因編輯技術可能存在的風險,再次說明了在投入臨床應用前進行充分安全性評估的必要性。


泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 基因編輯一定有風險,評測 CRISPR 工具的脫靶率 appeared first on PanSci 泛科學.

全球暖化的物理:金星證實,都是二氧化碳惹的禍

我懷疑有些人不喜歡「自然淘汰沒有先見之明」的觀點。事實上,這個過程本身確是不知道將來往哪裡去。 正是「環境」提供了方向;從長遠來看,在很大程度上其影響是不可預測的。

──弗朗西斯・克里克,Francis Crick (1916-2004) ,1962年諾貝爾醫學獎──發現DNA雙螺旋結構

在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡(泛科學,2015/11/11),筆者談到了在研究與人體有關的問題上,因爲無法隔離各種可能的「因素」來探討直接的因果關係,因此有關人體健康的研究爭論將永無止境。

地球氣象的複雜性雖然可能比人體簡單些,但也碰到同樣的無法控制之隔離因素的問題,更糟的是世界人口有 70 多億,生物學家與醫學家可以使用統計法來研究,但地球只有一個,因此氣象學家所能使用的研究工具大受限制!故地球是否正在暖化,也像「基因改造物種(GMO)是否對人體有害」一樣,呈現兩極化的爭論。

地球是否正在暖化,目前呈現兩極化的爭論。圖/pixabay

一個極端謂全球暖化是「庸人自擾,根本沒有這種現象。」他們認為地球在過去的 70 萬年中經歷了溫暖和寒冷的時期,以百年尺度來看, 我們或許正處於溫暖時期的中間,但以十萬年尺度來看,我們事實上是正走向另一個冰河時代。理論物理及數學家 Freeman Dyson 謂:「全球變暖是世界面臨的最重要問題的想法完全是胡說八道,並且造成了很大的傷害。」

另外一個極端則認為「氣象變化已經到了極端,我們如果不再採取行動,世界末日就在眼前。」去年 11 月 23 日,包括 300 名頂尖科學家在內的第四次全國(美國)氣候評估(Fourth National Climate Assessment)謂:「美國已經經歷了氣候變化帶來的嚴重和代價高昂的影響。」在 10 月份發布的另一份聯合國報告中,科學家們則謂:「各國需要極端的努力,才能將全球變暖限制在 1.5 攝氏度內——而且我們大約只有 12 年的時間。」

都是二氧化碳惹的禍

儘管爭論不斷,但 90% 以上的科學家均認為全球是正在暖化,雖然其中有些許認為原因不明,或現有的資料尚不足以支持是因「人類活動」造成的,但大多數都同意全球暖化的罪魁禍首是二氧化碳

二氧化碳在空氣中佔不到千分之一,怎麼竟成為全球暖化的罪魁禍首呢?在探討其原因之前,筆者必須在這裡指出,常被用來「證明」全球暖化之「90%以上的科學家均認為……」並不代表什麼!

誠如美國名作家、編劇、電影導演、和製片人(特別是在科幻小說、驚悚片、和醫學小說類型中的作品)Michael Crichton(1942–2008,哈佛醫學院高材生)所言:「科學工作與共識無關。 共識是政治事務; 相反地,科學只需要一名正確的調查員。…歷史上最偉大的科學家之所以偉大,正是因為他們打破了共識。…沒有共識科學這樣的東西。 如果達成共識,那就不是科學。 如果是科學,那就不是共識。」

科學工作與共識無關。圖/pixabay

不幸的是,如前面所提:因為複雜性及只有一個地球,這一名「正確的調查員」是永遠不會出現的。因此自圓其說的各種研究報告將繼續不斷地出現!如筆者在一些文章內所提的:讀者不能盲目地相信,必須用自己的判斷力來看所有的報告和研究!另一個讀者需要注意的是:作者的立場常有意或無意地影響了其結論!(例如今年2月底,美國白宮計劃創建由一群不認同「石化燃料的持續燃燒正在傷害地球」的特選聯邦科學家組成的特設小組,來重新評估政府對氣候科學的分析──不用等報告出爐,我們就應該已經知道結論了!)

筆者的立場在「人體太複雜了:為何有關人體健康的研究總是充滿爭論?」一文裡已表示得非常地清楚:「你說整天將手機放在耳邊對大腦沒有影響?怎麼可能呢!只是這環境改變不夠巨大,因此到底有那些人能夠成為適者而生存下來,那可能是幾百年後才可能知道的!」人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響將不再是「有些人」而已,而是整個人類。然而人類或其他動植物是否能成為適者,那就要看破壞及進化的相對速度了!

人類大量地製造出二氧化碳,怎麼可能不影響自然界的平衡呢?只是這影響究竟為何?圖/pixabay

黑體輻射與地球表面平均溫度

因為太陽是驅動我們氣候系統的基本能源,首先讓我們來看看經過 45 億年的太陽照射,「理想」的地球溫度應該是多少。太陽的直徑約為 140 萬公里,表面溫度為絕對溫度 6000°K, 所發射出來的能量(電磁波)分布如(圖一)所示。

(圖一):太空中之太陽能分布情形。因空氣之關係,太陽能抵達地面之分布大不相同。

從(圖一)可以看到:五官中最重要的器官「眼睛」,所能感應到的電磁波範圍,正是太陽能分布中最強的部份(占 47%),我們因之稱此範圍為可見光,其波長大約在 390∼750 奈米(10-9 公尺)之間!你說這是巧合還是演化的必然結果?事實上不僅人類及大部份動物如此,大部份植物也是利用可見光來進行其生存與繁盛所必須之光合作用的!

早在十九世紀末期,物理學家便致力於分析因溫度而放射的輻射能光譜(即分析某頻率範圍內有多少輻射能)。他們發現輻射能光譜僅與放射物質的溫度有關,卻幾乎與其組成的物質無關1。近代物理中的量子力學,便是為了解釋實驗光譜而興起的。事實上波茲曼(L. Boltzmann)早在1884年,便由熱力學導出溫度為T之物質的輻射總能量為:

ET(單位時間單位面積之總輻射能)=σT4

公式中之 σ 為史蒂芬—波茲曼常數(Stefan-Boltzmann constant),T為絕對溫度

將太陽的表面溫度代入上面公式,可以算出太陽一天所放射出的能量,足供人類一年所須,可是還好只有 21 億分之一的能量抵達地球2。當然,地球本身也會依上面的公式輻射。如果我們要求地球所吸收的能量等於它所輻射的能量,我們可以計算出地球的穩定溫度為 279°K(6°C)。信不信由你,這實際上竟然非常接近 1880 年時的地球表面平均溫度 287°K !3

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。圖/pixabay

經過 45 億年,地球溫度達到一個平衡值,似乎是很好的假設。因此我們不免要問:為什麼不是完全吻合呢?一個可能的解釋是:「因為大氣的關係,地球並不是一個很理想的黑體,大氣不但反射部分的太陽能,也吸收了地球往外太空輻射的部分能量。」但科學家不但未在大氣的各個層面看到更溫暖的氣溫,相反地,他們觀察到高層大氣的冷卻,以及對流層表面和下部的升溫——顯然是因為「溫室效應」在低層大氣中捕獲較多熱量之故。

什麼是「溫室效應」呢?相信許多讀者不但聽過,而且可能都親身體驗過,那就是在門窗緊閉之車子內的溫度可以比外面的溫度高出甚多4;因此在比較冷的地方,在玻璃屋內可以種一些熱帶植物。要了解玻璃屋內為什麼可以保持比較高的溫度,我們在這裡必須先溫習下電磁波(輻射能)與分子(原子)的作用。

溫室效應的物理

電磁波是一種電、磁場的振動,因此要與他作用,物體必須帶電。分子是由帶正電之原子核以及帶負電的電子組成的,因此一定可以與電磁波作用。20世紀量子物理的一大發現,就是分子本身的內在「振動」頻率,必須與電磁波頻率相同才能將它吸收。分子本身的內在「振動」大約可以分成三種:

  1. 電子在軌道中的跳動,其頻率大約都在可見光及紫外線附近;
  2. 分子的振動,其頻率大約都在紅外線附近;
  3. 分子的轉動,其頻率大約都在微波附近。

如果頻率不同,不能引起共振(吸收),那麼電磁波裡的電場就只能帶動分子內之電子,依它的頻率振動,往四面八方放出頻率相同的電磁波,造成散射(scattering)現象(如天空之所以是藍色的原因)。不管是吸收或散射,如果電磁波訊與分子繼續作用,其原來之能量最後都將被轉換改成熱能(分子之無規律運動——詳見延伸閱讀「熱力學與能源利用」)!

前面提過太陽的輻射主要是可見光,而玻璃是透明的,意即除了少數可見光被散射掉外,其他都毫無阻擋地通過,射落在地面及植物上(圖二),最後大都被吸收經由分子之間的作用改變成熱能,提高地面及植物的溫度。

因為它們的溫度比太陽低得多(室溫,大約只有 300°K 而已),故其頻率分佈與(圖一)完全不同,不但整個能量(分佈圖下的面積)少多了,其主要的輻射已不再是可見光,而是集中在紅外線區域。

電磁波的波譜與性質。圖/wikimedia

這些能量在往外輻射時,卻不幸碰到了「溫室氣體」及玻璃。這些氣體雖然不能吸收可見光,但是它們的的振動頻率正是集中在紅外區附近,因此這些輻射將大部分被吸收,使分子的振動變快。透過分子間的碰撞,這些快速的分子振動最後終被轉換成分子的動能──熱能,提高了室內空氣的溫度,造成所謂的「溫室效應」。

溫室氣體:二氧化碳與水蒸氣

地球雖然沒有玻璃罩,但是它卻被一層大氣包圍著。大氣的主要成分是氧氣(21%)、氮氣(78%)、及氬(1%),它們都是由同樣的原子組成的(氬是單一原子),因此振動不可能產生具正、負電端電偶,故不能與電磁波作用吸收紅外線。剩下的 1% 則主要是水及二氧化碳等微量氣體。水分子大都以水蒸氣形式存在,其濃度因地點和時間而異,大約在 0-4%之間變化:在寒冷乾燥的地區,水蒸氣通常佔不到大氣的 1%;而在潮濕的熱帶地區,水蒸氣幾乎佔大氣的4%。

二氧化碳分子(O=C=O)雖然因為對稱的關係不具電偶,但它的四個振動態中有三個(例如O===C=O)會破壞對稱而產生電偶,吸收同一頻率的電磁波。水分子本來就具電偶,因此與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」(greenhouse gas)。

水分子與二氧化碳一樣,可以吸收從地球表面放出來的黑體輻射,造成溫室效應使地球變暖,合稱為「溫室氣體」圖/pixabay

水在大氣中的份量比二氧化碳多,因此水應是改變地球輻射平衡的最重要的分子。但大氣中水蒸氣的濃度主要取決於海洋的蒸發(和凝結),而海洋是如此巨大,人類對它的直接影響有限,不能過多地改變它,因此只能將地球變暖全部怪罪到二氧化碳,及其他一些更少的氣體如甲烷、氮化氧等。

金星提供的間接證據

我們雖然不能在地球上進行任何實驗,來直接證明現在地球變暖是因為二氧化碳的關係,但被稱為地球姐妹之金星,似乎是提供了很好的一個間接證據。

金星的密度、體積、組成均與地球差不多,顯然是因為溫室效應的關係表面溫度高達 740°K!圖/pixabay

金星的密度、體積、組成均與地球差不多,但與太陽的距離為地球的 72%。如果我們也要求它所吸收的能量等於它所輻射的能量,我們可以很容易地計算出金星的穩定表面溫度應為 538°K;5 金星的實際表面溫度不但相當均勻,且高達 740°K!其原因顯然是因為溫室效應的關係 :金星的大氣幾乎完全是由二氧化碳組成的(僅含有微量的氮和硫酸)。而比它更近太陽的水星,因為沒有大氣調節溫度,溫度變化非常地大(103°K 到 700°K),最高的溫度也只有 700°K 而已。

讀完上面的論點,讀者覺得將「地球暖化歸咎於二氧化碳」有沒有道理?筆者在親朋好友間的一句「名言」是「飯吃過量對身體也是有害」,因此不需要任何物理就已經覺得很有道理了。人類生活水平的全面提高,無可否認地是因為大量使用能源的關係;大量燃燒石化物,無可否認地將產生大量的二氧化碳,破壞了原本之地球上的二氧化碳平衡6。此一平衡的破壞一定會有影響,如果不是暖化地球,那是什麼呢?筆者去年 12 月中旬回到台灣,帶了一些冬天的衣服,卻發現台灣天高氣爽,好像春天早已光臨寶島!

比利時科學家 Christian de Duve 曾言:「我們(人類)成功的代價是自然資源枯竭、導致能源危機、氣候變化、污染、和我們棲息地的破壞。 如果你耗盡了自然資源,那麼你的孩子就沒有什麼了。 如果我們繼續朝著同一個方向前進,人類就會走向一些可怕的考驗——如果不是滅絕的話。」

或許自然淘汰本身確是不知道要將我們往哪裡推,但過去幾次的地球氣候巨變,如:二疊紀(Permian)、三疊紀(Triassic)、或甚至寒武紀(Cambrian)中期,幾乎總是對生命造成高度破壞性,導致大規模物種滅絕。

人定勝天或者作繭自縛?且待下回分解──有嗎?

註解:

  1. 如果該物質為「黑體」,則輻射能光譜便完全與物質無關。黑體是一種理想化的物理體,無論頻率或入射角如何,都能吸收所有入射的電磁輻射。許多普通物體發射的輻射可以近似為黑體輻射。
  2. 利用簡單的幾何面積計算即可:πr2/4πR2( r為地球半徑,R為地球與太陽的距離)。
  3. 事實上筆者第一次看到這個「巧合」時,是有點「震驚」,想一想地球的表面溫度變化從184°K到331°K,並不是在一個平衡狀態,而總輻射能與絕對溫度的4次方成正比(用線性平均溫度算出來的總放射能將比實際的少)。
  4. 美國每年平均大約有 37 位小孩因為父母親忘了他們還留在車後座位而被熱死。
  5. 約等於(地球穩定表面溫度 287°K)× (1/0.72)2
  6. 與此同時,人類又大量地砍採可以幫助消化、平衡二氧化碳的樹木與森林!

延伸閱讀:

  1. 賴昭正:「我愛科學」,華騰文化有限公司2017年12月出版。該書收集筆者自1970年元月至2017年8月在科學月刊及少數其他雜誌所發表之文章編輯而成。本文章所涉及到之「熱力學與能源利用」、黑體輻射、史蒂芬—波茲曼定律、分子的振動、分子與電磁波的作用等均在裡面。
  2. 黑體輻射的研究如何導致量子力學的發展,請參考賴昭正:「量子的故事」,第二版,2005年,凡異出版社。

泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 全球暖化的物理:金星證實,都是二氧化碳惹的禍 appeared first on PanSci 泛科學.

除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點

這,可能是你今天一整天的生活:

剛睡醒,燈都還沒開,賴在床上先刷一輪臉書;去公司的路上,拿著小小的螢幕,搖搖晃晃地追著劇;上班時間,長時間近距離地看著大大小小,不只一個的螢幕;下班後又繼續看電影或是回家看電視。一整天下來,你的眼睛從來沒有休息過,不斷地接受著各種閃動的畫面和強光照射。

圖/pixabay

這也難怪有很多人從小到大,桌上放滿了各種強調保養眼睛的保養品。但要怎麼吃才有真的對眼睛有用呢?以下簡介幾種相當常見的護眼成分。

蝦紅素 (Astaxanthin)

蝦紅素又稱為蝦青素變胞藻黃素,是類胡蘿蔔素這個大家族的一種。蝦紅素正是在許多藻類、龍蝦、鮭魚等海鮮中,形成紅色或粉紅色的色素。蝦紅素是目前最受注目的抗氧化劑,同時具有親水端與親油端,所以比起維生素C、維生素E、花青素等抗氧化劑,能同時作用在細胞膜內外,消除更多自由基的傷害。

也因為高度抗氧化的能力,科學家對於蝦紅素在減緩眼睛、心血管和皮膚的老化上都寄予厚望。目前認為,蝦紅素的確可以有效減緩眼睛疲勞,改善睫狀肌調節的能力。每天服用 4-6 mg 蝦紅素,持續 2 到 4 周,就能明顯改善眼睛的疲勞感、保護黃斑部、增進眼睛聚焦的能力。

目前蝦紅素含量最高的雨生紅球藻,每 100 克大約含有 6000 毫克的蝦紅素,已經有大量研究測試商業化生產的可能性。

花青素 (Anthocyanins)

花青素和它的前驅物「原花青素」 (Proanthocyanins) ,也是近年來非常熱門的抗氧化物。花青素是一種水溶性、普遍存在於植物中的色素,像是葡萄、藍莓、蔓越莓、洛神花中都含有大量花青素。

由於目前主流科學認為自由基與老化有關,與蝦紅素類似,花青素在化學性質上,也是很強的抗氧化劑;對於抗發炎、保護眼球組織、保護眼睛微血管,改善區域血液循環都有所幫助。

花青素在人體內也用於合成視紫質。視紫質 (Rhodopsin) 的功用是用於提升眼睛對光的敏感度用,讓人適應較為黑暗的區域。如果視紫質不足,就容易有夜盲或弱視的現象。因此補充花青素,可以提高眼睛在暗處的辨識力。

β胡蘿蔔素與維生素A

β胡蘿蔔素在體內能夠轉變成維生素A,在許多水果、黃綠色蔬菜、肉蛋肝臟類食物中都有豐富含量。兩者都是脂溶性的營養素,一樣需要藉由脂肪輔助吸收,經過腸道吸收後,儲存在肝臟中,必要時再送到特定的位置,進行下一步的合成。

如果長期缺乏維生素A,可能會導致視力障礙、淚液分泌不足,角膜和結膜軟化等症狀。

也由於維生素A是脂溶性維生素,過度攝取,則容易堆積在體內,造成維他命A中毒,導致視力模糊、噁心頭痛等。孕婦如果在懷孕前期,補充過多維生素A也會導致胎兒的發育構造出現畸形,會增加小朋友發生唇顎裂的機率。

葉黃素 (Lutein)

目前研究認為,葉黃素除了能夠抗氧化之外,還能降低視網膜黃斑病變的機率,降低藍光對視網膜的傷害。市售葉黃素因為製作過程的不同,分為游離型 (free lutein) 與葉黃素酯 (lutein ester) 兩種型態。游離型葉黃素吸收過程中減損的比率較低,葉黃素酯因分子較大,消化的過程減損較多。食物中多數都是游離型葉黃素,目前從花中提煉的多數是葉黃素酯

2006年美國眼科協會曾針對4000名以上,50-85歲的參與者進行名為 AREDS 2 的實驗計畫,提出有效攝取葉黃素的配方為:

  • 游離態葉黃素 10 mg+玉米黃素 2 mg+銅 2 mg+Omega-3 1000 mg + 維他命C 500 mg+維他命E 400 IU+鋅 25 mg。

雖然有研究認為,AREDS 2 結果並沒有顯著意義,但後來卻有許多商業產品,直接引用此配方。這群實驗對象和實驗結果,是否能有效代表較年輕的族群和保護眼睛的目的,目前還有許多不同意見。

營養補充品,不是越吃越多越有效

圖/pixabay

比起過去以防止疾病發生為出發點的「每日飲食建議量」 (RDA, Recommended Dietary Allowance) ,現在的營養學界和醫學界,都更重視「每日營養最理想攝取量」 (ODA, Optimum Daily Allowance) 的概念,除了預防疾病之外,也希望能進一步維持健康、降低氧化壓力等。

以上介紹的幾種營養素,多為脂溶性,因此也有許多廠商添加在富含 DHA 的魚油中,促進吸收。

實務上,要針對每個人去設定合理攝取的營養素含量,非常困難。市面上的營養品也會因為原料、劑型、製作方式與共同添加物等因素,有不同的效果。

除非是極為特殊的飲食方式,一般而言,在做好防曬和避免陽光直射(戴太陽眼鏡)的前提下,適度增加戶外活動、減少近距離長時間聚焦小螢幕以及均衡飲食,是比選擇攝取營養添加物,維持好視力更加重要的習慣。

參考文獻:

  1. Davinelli, S., Nielsen, M., & Scapagnini, G. (2018). Astaxanthin in skin health, repair, and disease: A comprehensive review. Nutrients, 10(4), 522.
  2. Toden, S., Ravindranathan, P., Gu, J., Cardenas, J., Yuchang, M., & Goel, A. (2018). Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Scientific reports8(1), 3335.
  3. 衛生福利部國民健康署——國人膳食營養素參考攝取量

泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 除了葉黃素,想保養眼睛還能吃什麼?常見護眼營養成分盤點 appeared first on PanSci 泛科學.

運用高中物理,你也能做出美國設計的AS-1 地震儀

  • 文/林欽仁 (中央研究院地球科學研究所 研究助技師)

地震儀是地震學家了解地震波傳遞過程所仰賴的工具,而地震儀的發明也帶動了地震科學的發展。

為推廣地震科學教育,讓大眾了解地震儀器的原理,美國地震學研究聯合會 (Incorporated Research Institutions for Seismology, IRIS) 提出 AS-1 地震儀的機構設計,並撰寫地震資料軟體 Amaseis,期許大眾透過 DIY 實作了解地震儀器的運作,筆者的工作環境再加上身為 TEC 的一員,認為此地震儀相當符合教育推廣的需求,遂與同仁打造出中央研究院地球科學研究所版本的 AS-1,提供給高中及大學作為地科課程的教材。

質量塊、彈簧,再加點阻尼,於是地震儀就誕生了

首先來談談「如何觀測地震」,如果要測量地震造成的震動,我們需要一個作為相對於地面的參考點觀測,最理想的方式便是從空中來觀測地面的起伏變化。然而實務上此想法不容易達成,於是科學家想到另一個方法:利用質量塊、彈簧阻尼製作出地震儀,這也是組成地震儀的三要素。

這裡直接以 AS-1 地震儀的結構設計為例,詳述地震儀的運作原理。

地震儀利用彈簧拉起質量塊(也就是圖中的磁鐵),當地面震動的頻率大於彈簧頻率時,透過彈簧所懸吊的磁鐵會近似於靜止不動,這是利用牛頓運動定律中的「慣性」。因此地面的震動,也就是圖中的線圈,便與磁鐵有了相對運動,如此一來線圈的兩端產生了與地面震動速度成正比的電壓,運用的便是法拉第感應電壓原理

到此為止地震儀已經有了觀測地面震動的能力,但其系統響應[註1]並非理想,因為當地面以低於或接近於彈簧頻率來震動時,懸掛於彈簧上的磁鐵便也跟著地面晃動,在缺乏阻尼(可想像成是如摩擦力的阻力)的作用下,彈簧本身將產生自然振盪,也就是當地震的搖晃減小時,彈簧仍不住的搖晃,而這些非地震本身的運動,仍會反映於磁鐵線圈所產生的電壓變化,其紀錄的振幅甚至大於實際地面的震動訊號,影響了我們對地表震動的觀測。儘管彈簧造成的振動訊號可以透過儀器響應修正的方式來移除,卻也對分析地震資料的人來說造成不必要的困擾,為了克服此問題,地震儀需要加入阻尼的機制[註2]。

中央研究院地球科學研究所AS-1地震儀。圖/臺灣地震科學中心提供

有點晃又不能太晃,合適的阻尼如何設計?

AS-1 阻尼系統是由銅片及磁鐵組成,銅是良好的導電材料,但銅本身卻不會被磁鐵直接吸引。因此當銅片進、出磁鐵的磁場時,磁通量的變化會在銅片上產生感應電流,感應電流產生感應磁場,與磁鐵的磁場相互作用下可減緩銅片的運動速度,也就增加了地震儀的阻尼,這便是應用冷次定律來實現阻尼的結構。

地震儀在質量塊(磁鐵)、彈簧及阻尼三個元件的協調作用下,可達成觀測地面震動的工作。其實地震儀的運作原理與我們平常搭乘車子的懸吊系統類似,避震器之彈簧的功能在於避免路面的坑洞產生的不適,而避震器之阻尼在於減緩彈簧的自然振動,避免過多的振動影響汽車的操縱性。

其實地震儀的運作原理與車子的避震器有些相似。圖/pixabay

目前的 AS-1 地震儀僅能觀測地面垂直向的運動,水平向的觀測需仰賴不同的懸吊設計,但原理大致接近。此外,由於磁鐵質量塊的擺動為圓周運動,當擺動較大時其擺角將不可視為與地面垂直運動維持線性關係(d=l*sin(θ)≠l*θ; d為磁鐵圓周運動位移軌跡,l為旋轉半徑,θ為擺角),此時地震儀的系統方程式將會略加複雜。

為了解決這些問題,現代化的地震儀使用迴授控制技術[註3],控制質量塊之位置使其與地面震動無相對位移,此時控制的力量即與地面震動加速度成正比,此方式可以增加地震儀的頻寬,卻不增加其體積(譬如不需更大的質量塊),又可保持地震動觀測之線性度[註4],此技術已成為現代地震儀之基石。

設置於地球所大廳之AS-1地震儀所觀測之2017.11.11南投地震

最後,筆者希望透過組裝及運用 AS-1 地震儀的經驗,讓更多有興趣的人瞭解地震觀測儀器的原理,進而成立討論社群。期許 AS-1 地震儀的推廣教育,也能對地震的防救災有所貢獻!

備註

  • [註1]:簡單來說,系統響應是指地震儀器相對於真實地震情況的感應和記錄的能力,包括地震波的振幅與相位與頻率的關係。
  • [註2]:在沒有阻尼的機制下,便無法阻止地震後彈簧和質量塊多餘的晃動,這些紀錄便干擾了地震波紀錄。
  • [註3]:迴授控制:相對於 AS-1 地震儀其磁鐵與彈簧懸吊可自由運動我們稱其為開迴路系統 (open-loop system),另外一種地震儀的設計透過感測器來監控磁鐵與線圈的相對位移,並提供額外電流於線圈,所產生的電磁場可以改變磁鐵的位置,最終目的在於讓磁鐵與線圈無相對位移,稱為閉迴路系統 (close-loop system),而此控制技術稱為迴授控制。
  • [註4]:數學上來說線性關係為輸入與輸出可用一階線性方程式來描述,簡單來說為地震儀觀測之輸入(地動)與輸出(電壓)維持常數倍率之關係。

本文轉載自震識:那些你想知道的震事,原文為《地震儀自己動手作:AS-1地震儀介紹》,也歡迎追蹤粉絲頁震識:那些你想知道的震事了解更多地震事。


泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 運用高中物理,你也能做出美國設計的AS-1 地震儀 appeared first on PanSci 泛科學.

相對論流體動力學也出現在量子元件上!台師大研究揭開石墨烯材料之謎

國立臺灣師範大學光電工程研究所助理教授楊承山與美國加州大學柏克萊分校(UCBerkeley)物理系合作,發現並成功解釋超潔淨石墨烯中的量子臨界相對論電漿現象,並刊登於最新一期的全球最權威學術期刊《科學》(Science),解開十幾年來於二維材料科學中無法解釋的謎題。

揭示石墨烯存在於典型電子系統中觀察不到的相對論現象,對未來在超快量子元件的發展,佔有非常舉足輕重的角色。而微小化的兆赫波系統設計,更可望使兆赫波技術於高速無線通訊、儀器與檢測、新穎材料及國土安檢系統廣泛應用,進而改變人類生活。

石墨烯是甚麼?

石墨烯(Graphene)是由炭原子以 sp2混成軌域組成六角型呈蜂巢晶格的平面薄膜,厚度只有一個碳原子,是目前已知最堅硬的奈米材料。近年來石墨烯的出現在科學界激起了巨大波瀾,引發了研究熱潮。經過十多年研究,科學家發現,石墨烯是電阻率最小、導電性最佳,已知強度最高的物質,其透光性、導熱性、韌性非常好。可應用於透明觸控螢幕或太陽能電池。

科學家還發現,石墨烯可產生兆赫(terahertz, THz)範圍的輻射—將紅外線照射到石墨烯薄膜上,只需很短時間就能放射出兆赫的光源,進而開發出能在室溫條件下工作的高性能兆赫波雷射器。

石墨烯。圖/wikimedia

兆赫波的廣泛應用

兆赫波是指輻射頻率介於 0.1 THz 到 10 THz,波長範圍介於微波與紅外線之間的電磁波。由於其可應用在各式安檢設備,如海關、警局、醫院等,用來檢測X光偵測不到的塑膠炸彈、陶瓷武器及生物藥劑等危險物品;在醫學方面的應用,由於兆赫波的光子能量較低,影響人體的輻射能量遠低於X光,非常安全,甚至可在做生醫檢測時,更精準地知道手術成功機率;

在通訊方面,未來進入 5G 時代,兆赫波比目前使用的微波傳輸頻寬更廣,與光纖通訊網路結合,將能突破傳遞的距離限制,提供更快的網路服務,甚至比 Wi-Fi 標準快上數百倍速度。

兆赫波的輻射頻率範圍。圖/Wiki commons by Tatoute, CC BY-SA 3.0

綜合以上所述,兆赫波被全世界列為十大重要技術之一。過去科學家不知道如何穩定的產生兆赫波光源,直到 30 年前發明超快雷射後,可使用它所發射的飛秒脈衝產生兆赫波,才漸漸開始發展,並進行全面之科學研究,屬於未來光電科技的新興領域。

兆赫波微小晶片(On-chip)波導光譜系統。圖/國立台灣師範大學新聞稿

石墨烯應具有相對論現象!

臺灣師大光電所楊承山助理教授、美國加州大學柏克萊分校物理系王楓教授以及其博士後研究員 Patrick Gallagher 等人所組成的跨國研究團隊,費時近兩年時間完成這項突破性成果,整個實驗品大小約 3 平方公分。

團隊預期接近電中性的石墨烯應該像量子臨界相對論性電漿態「狄拉克流體」一樣,這是一種由相對論流體動力學描述的電子和電洞的量子臨界電漿體。團隊使用兆赫波微小晶片 (On-chip) 波導光譜系統,測量石墨烯中電子溫度介於 77 K和室溫 (300 K) 之間的量子臨界相對論電漿現象。其中包括發現狄拉克流體 (Dirac Fluid) 的臨界散射率特徵;以及發現其在較高摻雜濃度時,發現了同時具有零和非零總動量這兩種截然不同的載流模式,其為相對論流體動力學的一種重要表現形式。

這項研究工作揭示了材料的量子臨界性,其中每個部份處於有序和無序的量子疊加(類似於薛丁格的貓,在死和活著的量子態中疊加),以及石墨烯中電荷中性附近的異常動態激發。Landau 的費米液態(Fermiliquid)理論將典型金屬的電子相互作用定義為一種無交互作用準粒子的理想氣體。

然而,在石墨烯中,由於其線性能帶結構和強烈地庫侖交互作用,該理論並不適用。在輕度摻雜的情況下,研究團隊發現電流可以通過兩種不同的零和非零總動量模式來承載。隨著摻雜濃度的增加,零動量模式的行為會減少,而有限動量模式則會增加,進而形成從狄拉克流體到費米液體行為的過渡現象。

而在實際的實驗進行方式上,兆赫波時域光譜可在相當寬頻之範圍觀察量子臨界導電率,非常適合用於觀察該現象。然而,由於兆赫波繞射極限的關係,傳統的兆赫光譜儀僅能用於量測缺陷較多,動量較低的大面積石墨烯薄膜,進而觀測不到狄拉克流體的特性。

在此工作中,跨國研究團隊利用兆赫波微小晶片波導光譜系統,測量石墨烯中電子溫度介於 77K 和室溫 (300K) 之間的量子臨界相對論電漿現象,以確認電荷中性附近的量子臨界散射率。為了改變材料環境的溫度,研究團隊調整了激發光和兆赫探測脈衝之間的時間延遲,通過觀察兆赫波傳輸的穿透率變化來描述電荷中性下之載子運輸。

透過這種方式,此跨國研究團隊證明了狄拉克流體在石墨烯的實驗結果與相對論流體動力學理論之間的定量一致性,意味著石墨烯應具有相對論現象,這在典型的電子系統中是看不到的,相對論流體動力學在典型的電子系統並不適用。

  • 本研究成果已於108年2月28日刊登於國際期刊《科學》(Science),文章標題為:Quantum-critical conductivity of the Dirac fluid in graphene
  • 本文部分改寫自國立臺灣師範大學新聞稿,原標題為〈光電所楊承山跨國團隊研究 榮登國際頂尖期刊《Science》發現石墨烯中的量子臨界相對論電漿現象可望使超快量子元件 兆赫波技術廣泛應用 改變人類生活〉

泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 相對論流體動力學也出現在量子元件上!台師大研究揭開石墨烯材料之謎 appeared first on PanSci 泛科學.

塑膠可以煉成汽油?!讓垃圾重生為資源

塑膠的大量生產與廢棄傷害環境和生態

塑膠自問世以來改變了我們的生活,讓生活變得更便利。時至今日放眼生活周遭,隨處都是塑膠製品。但這樣便利的背後帶來大量的環境汙染問題。自 1950 年,塑膠首次大量生產,那一年總共製造出 200 萬噸塑膠。2017 年總量來到 83 億噸,2050 年預估將達到 340 億噸。

英國衛報的調查揭露,全世界每分鐘購買 100 萬個寶特瓶,2021 年將增加 20%。但美國學術機構領軍的全球性塑膠生產總量分析研究發現,有半數塑膠在四年內就變成垃圾;研究也指出,2015 年共生產了 70 億噸的塑膠垃圾,只有 9% 被回收,12% 被焚燒,剩餘的 79% 通通進入了掩埋場或環境中,汙染全球的陸地、海洋,嚴重傷害環境和生態。但每年仍然有大量新的塑膠被產出。

那麼廢棄的塑膠要如何回收處理呢?是否有機會再利用?科學家一直在思考這個問題。首先先來理解一些關於塑膠的基本知識。

塑膠是怎麼來的 ?

塑膠的原料是從石油當中提煉出來。石油如果利用分餾的方式,可以依沸點不同而分離加工得出煤油、苯、汽油、石蠟、瀝青等產品。石油主要是由碳原子與氫原子所構成的化合物,僅由碳原子與氫原子所組成的碳氫化合物又統稱為烴,而僅碳氫作簡單直鏈狀排列的稱之為烷。

以汽油成分之一的「辛烷」為例說明,如圖一所示,辛烷的主要骨架由 8 個碳原子排列而成,周圍與氫原子形成鍵結,這樣的簡單排列稱為「烷」類。因為有 8 個碳,分子以天干(甲、乙、丙、丁…….)命名,數字 8對應的字是「辛」,所以稱為辛烷。

圖一:8 個碳原子與 18 個氫原子作簡單直鏈狀排列組成的辛烷。source:wikimedia

從石油到塑膠

由於石油裡面成分混雜,若要生產塑膠,需要先將石油的分子切成較小的片段,再將它組裝成較大分子的塑膠。在學術專業領域中,將分子切割成小片段的過程稱為裂解(Pyrolysis),而重組後具有大分子量的化合物稱為聚合物(Polymer)。

將從石油中得出的輕油在 800℃~900℃ 的無氧狀態(有氧氣就變成燃燒反應)加熱,分子的鏈段會局部斷裂,被裁切成好幾段,以小分子的組成存在,這個過程稱為裂解。再經過一連串的分餾程序,將不同的化學成分利用沸點的差異分離後,取得氫氣、乙烯、丙烯、丁二烯、芳香烴等一系列石化基本原料。而主要產品是乙烯,是塑膠的重要原料。裂解的產物有多種成分,在此僅以最重要的成分來進行說明。

圖二:分子的高溫裂解。source:wikipedia

石油裂解後產生的乙烯分子(如圖三所示),可以經由化學反應讓彼此連結起來形成大的分子鏈(高分子聚合物),這樣的反應稱為聚合反應。

圖三:石油裂解後可得到乙烯

以乙烯為基本單元聚合而成的聚乙烯(如圖四所示),由於加熱為熔融狀態,就可將之擠壓成型,形成塑膠製品。所以我們使用的塑膠是經過石油裂解後再聚合所產生的。

圖四:乙烯分子經過聚合反應成為聚乙烯(塑膠)。source:newsmov                   

廢塑膠回收裂解煉油,怎麼來的怎麼去

讀到這裡讀者可能會想到,如果應用前面提到的熱裂解方法來處理(如圖二),是否就可以將已經聚合的高分子裂解成小分子烷類燃料?答案是肯定的。

為了提高分解聚乙烯分子的效率,科學家在裂解過程中加入催化劑來幫助裂解反應的進行,在 400℃~500℃ 的溫度下進行無氧裂解,使其回到原始的氫與碳原子狀態,接著再重新排列分子組成,就可將廢塑膠轉換成有用的燃料與蠟。

不過分解過程中所需用到的催化劑原料銥(Ir)與錸(Re)金屬,價格並不便宜。科學家的目標將致力於改善塑膠與催化劑間使用量的比例,將催化劑的比例降低,或提高催化劑回收率;除此之外也研究以更低價格的催化劑來取代昂貴的金屬,並期望未來若技術更成熟進步,可以處理未經分類、特殊分類或複合材質的塑膠。

廢塑膠回收裂解煉油,約 80~85% 可轉化為燃料油,其餘 5% 為天然氣,10% 則為碳黑。這項技術為塑膠垃圾的處理提供了一個可行的方法,讓危害環境和生態的塑膠垃圾有機會變成有價值的資源。

回收的廢塑膠轉化成汽油 [1] 。source:america.aljazeera.com

參考文獻

  1. Ostashevsky, L. (2014, November 11). The afterlife of plastic. Al Jazeera America.
  2. Taylor, M. (2017, July 19). Plastic pollution risks ‘near permanent contamination of natural environment’. The Guardian.
  3. 全球塑膠生產總量分析 揭83億噸的「重量級」傷害。環境資訊中心。
  4. 塑膠廢料萬年不滅? 回收煉油再創資源價值。環境資訊中心。

泛知識節倒數一周!3/30、3/31隆重登場!

宇宙間有好多好多的知識,怎麼學都讓人不滿足。而學習也有好多好多方式,才不只是背誦跟考試。

讓我們在泛知識節一起探索學習的 N 種方式,找回學習的樂趣、求知的純粹,讓天下沒有難學的知識!

想知道學習還有什麼可能?就來知識節吧:http://bit.ly/2FgTb83

想了解更多可以去官網看看喔:http://bit.ly/2FhrsUF


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 塑膠可以煉成汽油?!讓垃圾重生為資源 appeared first on PanSci 泛科學.

人生大事難以抉擇?用「最佳停止點」來幫助你下決定吧!

大學新鮮人通常是戀愛解禁的時刻,但如何抉擇愛情,是許多莘莘學子一生的困惑。許多人喜歡對他人的感情做出評論,但似乎沒有人使用科學或心理學的方法來討論。這個問題在歐美地區一樣很常見,高中生情侶上大學後分隔兩地,第一次回家過感恩節假期,之後往往就會分手,俗稱為「火雞分手」(Turkey drop,如果你很好奇拿這個辭去Google,你會發現很多有趣的事)。

若將這件事情說的更科學一點,我們可能要換個說法:如果我們遵守連續單偶制(指一人有許多配偶,但每次只有一個),那要跟多少人在一起過,才能知道誰最適合你?

那要跟多少人在一起過,才能知道誰最適合你呢?這事能夠計算得出來的嗎?圖/pixabay

此一困境在數學心理學(Mathematical psychology)上已經研究多年。數學心理學屬於認知心理學的次領域,是使用數學模型來討論心理學所遭遇的各種問題。如何在最佳時機作決定,稱為「最佳停止點」(或稱「最佳停止問題」,Optimal Stopping)〔1]。「最佳停止點」可以應用的方向很廣,舉凡需要做抉擇的事情,都可以用此方法來思考,小到午餐要吃什麼、找停車位、找旅館,大到面試新人、租房子、買賣房子、決定人生伴侶等等。

這個問題已經有了最佳的解答,就是 37﹪法則。

什麼意思?就是將願意花掉的總時間乘以 37﹪,就是最佳決定的時刻。舉一個簡單例子,如果你想要在兩個月之內租到房子,那個房子是最佳房子的最佳機率。那就把 60 天乘以 37﹪,也就是 22 天。也就是花了 22 天之後,你就要出手了。只要找到比你先前看過的房子更令人心動的房子,就立刻動手,不要猶豫,這就是最佳決定的時間點,因為你花再多時間也不可能找到更好的了。

將願意花掉的總時間乘以 37﹪,就是最佳決定的時刻。圖/pixabay

秘書問題:以最少的時間面試,找到最佳的人選

為什麼是 37﹪,而不是其他數字,這是一個嚴謹數學的問題。「最佳停止點」源自一個古老的起點稱為「秘書問題(secretary problem)」:我們希望花最少的時間,找到最佳的人選。最佳的解決方案,是設定一段思考時間,在這段時間中,先不錄取。但過了這段時間,只要看到比思考階段更好的人選時,就馬上錄取。

如果我們逐一將面試的幾人之後,就做出決定,依序可得到表一。面試兩人時,不論錄取誰,成功率都是 1/2(兩人各有一半的機率是最佳人選)。如果有三人應徵,情況變得較為複雜。在面試第一人,先按兵不動。面試第二人時,若我們知道他比第一位好,就先錄取;若比第一位差,就不錄取。如此找到最佳人選的機率,跟應徵兩人時是一樣的,也是 1/2

當可選擇的人數越來越多時,做決定的界線就是 37﹪。採用這個策略,找到最佳人選的機率也趨近 37﹪。沒錯,世界上並不存在最完美的策略,就算是我們覺得這是最好的方法了,其失敗率仍有 63﹪。採取這樣的方法,主要是取決於大多數的情況下,我們都無法找到最佳人選;但最佳停止策略,卻幫我們節省最多的時間。

表:面試的幾人後,就下決定最好。圖/泛科學重製,參考自《決斷的演算》,頁26。

回到決定人生伴侶這件事也是雷同的。37﹪法則不只用在應徵人數,也可用在尋找時間。假設從 18 歲開始,我們就汲汲營營於尋找另一半,至 45 歲左右為止。那依據最簡單的減法與乘法(〔(45-18)+1〕×37﹪=10.36),那決定終身伴侶的時間點,就是落在 28 至 29 歲之間。如果那時你已經有合適的伴侶,那就可以考慮結婚了,因為以後也找不到更好的了。(假設啦,我知道真實的情況是像下圖這樣XD)。

截圖取自《心理學派不上用場》。

面對七嘴八舌的詢問,就「解釋」給他們聽吧!

如此之結果,就是對於大一新生伴侶,最好的解答。他們根本不用在十八歲就做人生最後的決定,最佳最合適的時間點根本還沒到。如果遇到惱人的三姑六婆,我們可以拿出數學慢慢算給他們聽,以他們對於數學的耐受力,肯定三分鐘後就放你一馬了。(因為根據 37﹪法則,他們對於困難數學的問題最多只能聽十分鐘,他們能撐三分鐘,已經是最佳策略了)。

圖/pixabay

其實這個解決方法十分好用,很多時刻時我們常常不知如何做決定,包括買東西、找車位、訂機票、訂旅館等等,難以抉擇的當下無時無刻的困擾著我們。這時候,想想人生並不存在 CP 值最高的,而是「最佳停止點」,才是最完美的策略,想必對於困境也就能慢慢釋懷了。

  • 註:因為三位應徵者,若依其優秀程度,有六種排列方式:1-2-3、1-3-2、2-1-3、2-3-1、3-1-2、3-2-1。若依上面所述,面試第一人先不動。接著只要有更好的人選就錄取,這樣成功錄取最優秀的排列為2-1-3、2-3-1、3-1-2,佔全體一半。若是另外三種排列方式1-2-3、1-3-2、3-2-1,一樣有一半的機率錯過最佳人選。

參考資料與延伸閱讀:

  1. 甘錫安(譯)(2017)。決斷的演算:預測、分析與好決定的11堂邏輯課(Brain Christian & Tom Griffiths)。新北:遠足文化。

泛知識節倒數中!3/30、3/31隆重登場!

知識能不能當飯吃?當然!但要做得好吃、容易消化,還要讓人收穫滿滿,那可真是門學問。

泛知識節裡,我們要和你分享「科學可以怎麼學?」「科普書如何鍊成?」、「知識型Youtuber們的辛酸血淚史」、「有趣的展覽如何策劃?」還有「官方科普如何把研究說得有趣?」

想知道這些獨家秘辛,就快來:http://bit.ly/2Hm3MRv

想了解更多可以去官網看看喔:https://panfest.panmedia.asia/


泛科學院精選線上課程:爸媽需要搞懂的 14 堂大腦教養課(預購)

老是覺得小孩不乖?各位爸媽別煩惱,一起跟著資深心理師學習「教養心理學」,了解孩子的心理狀態和發展需求,讓親子之間溝通更順暢、關係更親密!

The post 人生大事難以抉擇?用「最佳停止點」來幫助你下決定吧! appeared first on PanSci 泛科學.